Sec. 8.4 Trigonometric Equations and Inverse Functions

Solving Trigonometric Functions Graphically:

- 1. Enter each side of the equation into y_n =.
- 2. Find the point of intersection(s).

Ex: Given that the rabbit population can be found by $R = -5000 \cos\left(\frac{\pi}{6}t\right) + 10000$, find the time when the population reaches 12,000 rabbits.

Solving Trigonometric Functions Algebraically:

Ex: Now find the solution to the rabbit situation $R = -5000 \cos\left(\frac{\pi}{6}t\right) + 10000$ algebraically.

$$12,000 = -5000 \cos\left(\frac{\pi}{6}t\right) + 10,000$$

$$2000 = -5000 \cos\left(\frac{\pi}{6}t\right)$$

$$-\frac{2}{5} = \cos\left(\frac{\pi}{6}t\right)$$

$$\frac{\pi}{6}t = \cos^{-1}\left(-\frac{2}{5}\right)$$

$$\frac{\pi}{6}t = 1.9823$$

$$t = 3.786 \text{ Months}$$

$$7 = 2\pi - 1.9823$$
 $7 = 2\pi - 1.9823$
 $7 = 4.3009$
 $7 = 8.214$ months

The **inverse cosine** function, also called the arccosine function, is written $\cos^{-1} y$ or $\arccos y$.

We define $\cos^{-1} y$ as the angle between 0 and π whose cosine is y. More formally, we say that

 $t = \cos y$ provided that $y = \cos t$ and $0 \le t \le \pi$.

Note that for the inverse cosine function:

- the domain is $-1 \le y \le 1$
- the range is $0 \le t \le \pi$.

Ex. Evaluate without a calculator:

- (a) $\cos^{-1} 0$
- (b) arccos(1)
- (c) $\cos^{-1}(-1)$

 $(d) \left(\cos(-1)\right)^{-}$

(The angle between 0 and (The angle between 0 and (The angle between 0 and IT That has a cosine of -1)

That has a cosine of 0.) IT that has a cosine of -1)

 $\cos(-i) = .540$ $\cos(-i) = .540$ $\cos(-i) = .540$ $\cos(-i) = .540$ The inverse sine function, also called the arcsine function, is denoted by $\sin^{-1} y$ or $\arcsin y$. We define:

$$t = \sin^{-1} y$$
 provided that $y = \sin t$ and $-\pi/2 \le t \le \pi/2$.

The inverse sine has domain $-1 \le y \le 1$ and range $-\pi/2 \le t \le \pi/2$.

The inverse tangent function, also called the arctangent function, is denoted by $tan^{-1}y$ or arctan y. We define:

$$t = \tan^{-1} y$$
 provided that $y = \tan t$ and $-\pi/2 < t < \pi/2$.

The inverse tangent has domain $-\infty < y < \infty$ and range $-\pi/2 < t < \pi/2$.

Ex: Evaluate:

(a)
$$\sin^{-1}(1)$$

(b)
$$\arcsin(-1)$$

(c) $tan^{-1}(0)$

(a) $\sin^{-1}(1)$ (b) alcoin(1)

The second of that has a sine of 1)

(b) alcoin(1)

The second of the

A. Solve $\sin \theta = 0.9063$ for $0 \le \theta \le 2\pi$. Then write all solutions for the equation.

$$Q = \sin^{-1}(.9063)$$

 $Q = [1.134]$
 $\begin{cases} Between = \frac{\pi}{2}, \frac{\pi}{2} \end{cases}$

Q2 = TT - 1.134 = 2.007

0 = { 1.134+2KTT | 2.007+2KTT |

B. Solve $\cos \theta = -\frac{3}{5}$ for $0 \le \theta \le 2\pi$. Then write all solutions for the equation.

C. Find all exact values to $\cos \theta = -\frac{1}{2}$

$$\theta = \begin{cases} \frac{2\pi}{3} + 2\kappa\pi \\ \frac{4\pi}{3} + 2\kappa\pi \end{cases}$$

For an angle θ corresponding to the point P on the unit circle, the **reference angle** of θ is the angle between the line joining P to the origin and the nearest part of the *x*-axis. A reference angle is always between 0° and 90°; that is, between 0 and $\pi/2$.

HW: pg 347 – 349 #2,4,6,10,12,16,22,26,32,34,35,43